Python

From SpenchWiki
Jump to: navigation, search

Reading input

import fileinput

for line in fileinput.input():
    pass

Fileinput will run over all lines in the input; it takes the files given as command-line arguments, or if missing, the standard input.

Geo calculations

def Rad2Deg(x):
    "Radians to degress."
    return x * (180/math.pi)

def CalcRad(lat):
    "Radius of curvature in meters at specified latitude."
    a = 6378.137
    e2 = 0.081082 * 0.081082
    # the radius of curvature of an ellipsoidal Earth in the plane of a
    # meridian of latitude is given by
    #
    # R' = a * (1 - e^2) / (1 - e^2 * (sin(lat))^2)^(3/2)
    #
    # where a is the equatorial radius,
    # b is the polar radius, and
    # e is the eccentricity of the ellipsoid = sqrt(1 - b^2/a^2)
    #
    # a = 6378 km (3963 mi) Equatorial radius (surface to center distance)
    # b = 6356.752 km (3950 mi) Polar radius (surface to center distance)
    # e = 0.081082 Eccentricity
    sc = math.sin(Deg2Rad(lat))
    x = a * (1.0 - e2)
    z = 1.0 - e2 * sc * sc
    y = pow(z, 1.5)
    r = x / y

    r = r * 1000.0      # Convert to meters
    return r

def EarthDistance((lat1, lon1), (lat2, lon2)):
    "Distance in meters between two points specified in degrees."
    x1 = CalcRad(lat1) * math.cos(Deg2Rad(lon1)) * math.sin(Deg2Rad(90-lat1))
    x2 = CalcRad(lat2) * math.cos(Deg2Rad(lon2)) * math.sin(Deg2Rad(90-lat2))
    y1 = CalcRad(lat1) * math.sin(Deg2Rad(lon1)) * math.sin(Deg2Rad(90-lat1))
    y2 = CalcRad(lat2) * math.sin(Deg2Rad(lon2)) * math.sin(Deg2Rad(90-lat2))
    z1 = CalcRad(lat1) * math.cos(Deg2Rad(90-lat1))
    z2 = CalcRad(lat2) * math.cos(Deg2Rad(90-lat2))
    a = (x1*x2 + y1*y2 + z1*z2)/pow(CalcRad((lat1+lat2)/2), 2)
    # a should be in [1, -1] but can sometimes fall outside it by
    # a very small amount due to rounding errors in the preceding
    # calculations (this is prone to happen when the argument points
    # are very close together).  Thus we constrain it here.
    if abs(a) > 1: a = 1
    elif a < -1: a = -1
    return CalcRad((lat1+lat2) / 2) * math.acos(a)

(From gps.py in gpsd)